 ver. 2/8/2023 Copyright 2009-2023 Brian M. Tissue, all rights reserved. For use with: Brian M. Tissue, Basics of Analytical Chemistry and Chemical Equilibria, 2nd Ed. (John Wiley: Nehttp://www.achem.org Worksheets in this file notes This page with background information. 7.A free-metal See example 7.2 in the text for set-up. 7.B metal-hydrolysis Predicting pH of metal solutions. 7.C stepwise formation K_f Converting beta to Kf and making alpha plots. Background Refer to Chapter 7 in the text for equations and explanations. Each worksheet has instructions in the blue shaded box. For step-by-step help see you-try-it-07guide.pdf. 	
Copyright 2009-2023 Brian M. Tissue, all rights reserved. For use with: Brian M. Tissue, Basics of Analytical Chemistry and Chemical Equilibria, 2nd Ed. (John Wiley: Nethtley://www.achem.org Worksheets in this file notes This page with background information. 7.A free-metal See example 7.2 in the text for set-up. 7.B metal-hydrolysis Predicting pH of metal solutions. 7.C stepwise formation K_{τ} Converting beta to Kf and making alpha plots. Background Refer to Chapter 7 in the text for equations and explanations. Each worksheet has instructions in the blue shaded box. For step-by-step help see you-try-it-07guide.pdf.	
Copyright 2009-2023 bitain M. Insue, an inglishteserved. For use with: Brian M. Tissue, Basics of Analytical Chemistry and Chemical Equilibria, 2nd Ed. (John Wiley: Nehttp://www.achem.org Worksheets in this file notes This page with background information. 7.A free-metal See example 7.2 in the text for set-up. 7.B metal-hydrolysis Predicting pH of metal solutions. 7.C stepwise formation K ₁ Converting beta to Kf and making alpha plots. Background Refer to Chapter 7 in the text for equations and explanations. Each worksheet has instructions in the blue shaded box. For step-by-step help see you-try-it-07guide.pdf.	
Brian M. Tissue, Basics of Analytical Chemistry and Chemical Equilibria, 2nd Ed. (John Wiley: Ne http://www.achem.org Worksheets in this file notes This page with background information. 7.A free-metal See example 7.2 in the text for set-up. 7.B metal-hydrolysis Predicting pH of metal solutions. 7.C stepwise formation K _f Converting beta to Kf and making alpha plots. Background Refer to Chapter 7 in the text for equations and explanations. Each worksheet has instructions in the blue shaded box. For step-by-step help see you-try-it-07guide.pdf.	
Background Background Refer to Chapter 7 in the text for equations and explanations. Each worksheet has instructions in the blue shaded box. For step-by-step help see you-try-it-07guide.pdf.	w York 2023)
Worksheets in this filenotesThis page with background information.7.A free-metalSee example 7.2 in the text for set-up.7.B metal-hydrolysisPredicting pH of metal solutions.7.C stepwise formation KtConverting beta to Kf and making alpha plots.BackgroundRefer to Chapter 7 in the text for equations and explanations.Each worksheet has instructions in the blue shaded box.For step-by-step help see you-try-it-07guide.pdf.	, ion, 2020).
notesThis page with background information.7.A free-metalSee example 7.2 in the text for set-up.7.B metal-hydrolysisPredicting pH of metal solutions.7.C stepwise formation K_f Converting beta to Kf and making alpha plots.BackgroundRefer to Chapter 7 in the text for equations and explanations.Each worksheet has instructions in the blue shaded box.For step-by-step help see you-try-it-07guide.pdf.	
 7.A free-metal See example 7.2 in the text for set-up. 7.B metal-hydrolysis Predicting pH of metal solutions. 7.C stepwise formation K_f Converting beta to Kf and making alpha plots. Background Refer to Chapter 7 in the text for equations and explanations. Each worksheet has instructions in the blue shaded box. For step-by-step help see you-try-it-07guide.pdf.	
 7.B metal-hydrolysis Predicting pH of metal solutions. 7.C stepwise formation K_f Converting beta to Kf and making alpha plots. Background Refer to Chapter 7 in the text for equations and explanations. Each worksheet has instructions in the blue shaded box. For step-by-step help see you-try-it-07guide.pdf.	
7.C stepwise formation K _f Converting beta to Kf and making alpha plots. Background Refer to Chapter 7 in the text for equations and explanations. Each worksheet has instructions in the blue shaded box. For step-by-step help see you-try-it-07guide.pdf.	
<u>Background</u> Refer to Chapter 7 in the text for equations and explanations. Each worksheet has instructions in the blue shaded box. For step-by-step help see you-try-it-07guide.pdf.	

You-Try-It 7.A Free Metal Fraction

Table 7.A.1 lists different ammonia concentrations, where c_NH_3 represents formal concentration.

1. Predict the fraction of $\mathrm{Ag}^{^{+}}$ remaining as the free ion for each solution.

You may do your calculations assuming that $\beta_2' = \beta_2$.

The formal concentration of Ag⁺ is $c_{Ag} = 5.0 \times 10^{-4}$ M.

The equilibrium is:

$$Ag^{+} + 2 NH_3 \rightleftharpoons Ag(NH_3)_2^{+}$$
.

Hint: spreadsheets are ideal to calculate using successive approximations.

2. Plot the alpha fraction versus c_NH_3 .

 $\boldsymbol{\beta}_{2} = 1.1E+07$ $\boldsymbol{c}_{Ag} = 5.00E-04$ M $\boldsymbol{\alpha} =$ (first guess)

Table 7.A.1

		[Ag⁺]		[Ag⁺]		[Ag⁺]	
case	$c_{\rm NH_3}$	1st approx	alpha	2nd approx	alpha	3rd approx	alpha
1	2.00E-03						
2	4.00E-03						
3	6.00E-03						
4	8.00E-03						
5	1.00E-02						

You-Try-It 7.B	Metal Hydrolysis
----------------	------------------

Table 7.B.1 lists several aqueous solutions of metal salts.

- 1. Use the adjacent pK_a values to predict $p[H_3O^+]$ for each solution. You may assume that the solutions are degassed to remove CO_2 and that the anion does not react with water.
- 2. Review the results and correct any discrepencies. Recalculate $p[H_3O^+]$ using the corrected K_a' values.

metal	pK a
Mg ²⁺	11.4
Co ²⁺	9.7
Cu ²⁺	7.5
Co ³⁺	6.6
Al ³⁺	5.0

Table 7.B.1

case	soluble salt	c (M)	K a	[H₃O ⁺]	p[H₃O ⁺]
1	Cu(NO ₃) ₂	0.0010			
2	$AI_2(SO_4)_3$	0.0010			
3	MgCl ₂	0.0010			
4	MgCl ₂	0.10			

There are two calculations that we should revisit.

The first calculation to check is case 3, the 0.001 M $MgCl_2$.

If we expect metal hydrolysis to make a solution acidic, a basic pH of 7.2 does not make any sense. In this case, the amount of H_3O^+ produced by the Mg²⁺ is lower than the autoionization of water. We may neglect the metal hydrolysis and predict that the solution will have a pH of 7:

case	soluble salt	<i>c</i> (M)	K _a	[H₃O ⁺]	p[H₃O ⁺]
3	MgCl ₂	0.0010			

In case 4, a higher concentration of Mg^{2+} does affect the solution pH.

The other calculation that we can revise is in case 2.

The calculated result of $[H_3O^+] = 1.4E-4$ M is not insignificant compared to the 1.0E-3 M metal concentration. Recall that we calculated $[H_3O^+]$ assuming that $(c - [H3O+]) \approx c$. We can recalculate using a successive approximation:

case	soluble salt	<i>c</i> (M)	K _a	$[H_3O^+]$	[H₃O [⁺]]	p[H₃O [⁺]]
2	$AI_2(SO_4)_3$	0.0010				

You-Try-It 7.C Stepwise K_f

Tables 7.C.1 and 2 list cumulative formation constants for two different metal-ligand combinations.

- 1. Use the β_n values to calculate stepwise formation constants, K_n . We will neglect activity effects in these calculations, i.e., $K_n' = K_n$.
- 2. Use the stepwise formation constants, K_n to plot alpha plots. Equations for alpha values are on page 264 of the text.

Table 7.C.1. Log formation constants for Fe³⁺/SCN⁻ complexes

	n = 1	n = 2
log <i>6</i> _n	2.11	3.30
6 _n		
K n		

Table 7.C.2. Log formation constants for Cu²⁺/NH₃ complexes

	n = 1	n = 2	n = 3	n = 4
log β _n	4.25	7.61	10.60	12.40
6 _n				
K _n				

[L]	log[L]	alpha0	alpha1	alpha2
1.0E-06				
2.0E-06				
4.0E-06				
6.0E-06				
8.0E-06				
1.0E-05				
2.0E-05				
4.0E-05				
6.0E-05				
8.0E-05				
1.0E-04				
2.0E-04				
4.0E-04				
6.0E-04				
8.0E-04				
1.0E-03				
2.0E-03				
4.0E-03				
6.0E-03				
8.0E-03				
1.0E-02				
2.0E-02				
4.0E-02				

6.0E-02 8.0E-02 1.0E-01 2.0E-01 4.0E-01 6.0E-01 8.0E-01

1	∟∩∩
т.	-00

[L]	log[L]	alpha0	alpha1	alpha2	alpha3	alpha4
1.0E-06						
2.0E-06						
4.0E-06						
6.0E-06						
8.0E-06						
1.0E-05						
2.0E-05						
4.0E-05						
6.0E-05						
8.0E-05						
1.0E-04						
2.0E-04						
4.0E-04						
6.0E-04						
8.0E-04						
1.0E-03						
2.0E-03						
4.0E-03						
6.0E-03						
8.0E-03						
1.0E-02						
2.0E-02						
4.0E-02						
6.0E-02						
8.0E-02						
1.0E-01						
2.0E-01						
4.0E-01						
6.0E-01						
8.0E-01						
1.0E+00						