try	10/0/2010	
•	10/8/2018	
	Copyright 2009-2018 Brian M. T	issue, all rights reserved.
	For use with:	
	Brian M. Tissue, Basics of Anal	lytical Chemistry and Chemical Equilibria, (John Wiley: New York, 2013).
	http://www.achem.org	
	Worksheets in this file	
	notes	This page with background information.
	8.A balancing redox reactions	Identify oxidation states and balance reactions.
	8.B Nernst equation	Calculate potential as a function of concentration and temperature.
	8.C Potentiometry	Use standards to calibrate an ion-selective electrode meassurement.
	8.D Voltammetry	Plot scan rate and concentration dependence for cyclic voltammetry.
	Background Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.
	Refer to Chapter 8 in the text fo Each worksheet has instructions	s in the blue shaded box.

You-Try-It 8.A

Balancing Redox Reactions

Table 8.A.1 lists a series of unbalanced redox reactions.

- 1. Identify the atoms that undergo a change in oxidation state and write half reactions.
- 2. Balance each half reaction.
- 3. Combine half reactions to eliminate electrons.

Table 8.A.1

case	reactants				products		
1	CH ₃ CH ₂ OH(/) ethanol	+	O ₂ (g) oxygen	\rightarrow	CH ₃ CHO(/) acetaldehyde		
2	CH ₃ CH ₂ OH(/) ethanol	+	Cr ₂ O ₇ ^{2–} (aq) dichromate ion	→	CH ₃ COOH(/) acetic acid	+	Cr ³⁺ (<i>aq</i>) chromium ion
3	CH ₃ CH ₂ OH(/) glucose	+	O ₂ (g) oxygen	÷	CH ₃ CH ₂ OH(/) gluconic acid	+	H ₂ O ₂ (g) hydrogen peroxide
4	CH ₃ CH ₂ OH(/) glucose	+	O ₂ (g) oxygen	\rightarrow	CH ₃ CH ₂ OH(/) ethanol	+	CO ₂ (g) carbon dioxide

case	notes			
1	reaction in the liver			
2	colorimetric breathalyzer (catalyst and spectator ions not shown)			
3	sensor reaction			
4	fermentation reaction			

You-Try-It 8.B Nernst Equation

Table 8.B.1 lists Nernst equation parameters for a Ag/AgCl reference electrode.

- Use the data in Table 8.B.2 to predict reference electrode potential as the composition of the internal reference solution changes. You may assume that the listed concentrations are equal to activity.
- 2. Use the data in Table 8.B.3 to determine how temperature affects the reference electrode potential.
- Use the data in Table 8.B.4 to calculate cell voltage as a function of [Zn²⁺] for the following cell:
 Ag | AgCl | 0.1 M Cl⁻ || Zn²⁺ | Zn

Plot the results to confirm the log dependence.

Table 8.B.1. N	ernst equation p	arameters.				
E°	0.222	V	Sample calculatio	n for the h	alf reaction	n:
R	8.314	J/mol·K	$AgCl(s) + e^- \rightarrow Ag$	(s) + Cl ⁻		
Т	298	К	E = E	° – (RT/nł	=) ln(Q)	
n	1		for $Q = [Cl^-] =$	3.00	М	
F	96485	C/mol	E =	0.194	V	

Table 8.B.2. Internal solution dependence for Ag/AgCl reference electrode. T = 298 K.

[Cl [¯]] (M)	E (V)
0.10	
1.00	
2.00	
3.00	
3.50	

37

Table 8.B.3. Temperature effects for Ag/AgCl reference electrode. [Cl⁻] = 3.0 M.

Table 8.B.4. Cell voltage for a zinc indicator electrodes.

$(V) \qquad E_{cell}(V)$		E_Ag/AgCl	E_Ag/AgCl 0.281
		E°	Е [°] -0.762
		R	R 8.314
		Т	T 298
		n	n 2
		F	F 96485
n	n (V) E _{cell} (V)	E° R T	E° -0.762 R 8.314 T 298 n 2

Nernst equation parameters for 8.B.4.

You-Try-It 8.C Potentiometry

Tables 8.C.1 and 8.C.2 list data for standards and test portions using a homemade chloride ISE. The indicator electrode was a silver wire and the reference electrode was constructed of $Cu/CuSO_4$.* All solutions were measured in 1 M NaNO₃ ionic strength adjustment buffer.

- 1. Construct a calibration curve from the standard data.
- 2. Determine the chloride concentration in the test solutions.

Table 8.C.3 lists measurements for this ISE of the 10 ppm standard with added NaOH. All test solutions were made up to 20.0 mL after adding the OH⁻ spike. Supporting information is below the data table.

3. Determine the selectivity coeffient for hydroxide ion for this ISE.

*Lisensky, G.; Reynolds, K. "Chloride in Natural Waters," J. Chem. Ed. 1991, 68, 334.

Table 8.C.1. Chloride standards.					
Cl ⁻ standards					
(ppm)	log[Cl [−]]	Voltage (mV)			
10		148			
100		103			
1000		50			
10000		-7			
slope =		mV/decade			
intercept =		mV			

Table 8.C.2.	Unknown	measurements.
--------------	---------	---------------

test portion	Voltage (mV)	[Cl] (ppm)	
tap water	134		The ISE equation for chloride is:
well water	120		E = intercept – (slope)log[Cl ⁻]
DI water	170		
neat tenderizer	72		

The meat tenderizer solution contained 62 mg of product dissolved in 100 mL of water.0.062g sampleBonus question: What is the weight percent of NaCl in this product?0.0620.0620.062

Cl and NaCl formula weights: 35.45 g/mol

58.44 g/mol

% NaCl

added NaOH (mL)	[OH [−]] (ppm)	Voltage (mV)	k
0.0		147	
0.2		145	
0.4		140	
0.6		138	

Table 8.C.3. Standard addition of OH^{-} to determine k.

average:

Supporting Information					
NaOH conc:	0.1	M NaOH			
NaOH f.w.:	40	g/mol			
NaOH conc:	4000	ppm NaOH			
test volume:	20	mL			

The ISE equation for chloride and hydroxide is: *E* = intercept – (slope)log([Cl⁻]+*k* [OH⁻])

You-Try-It 8.D Cyclic Voltammetry

The adjacent figures show typical cyclic voltammograms for ascorbic acid (vitamin C). The one-electron oxidation reaction is irreversible and only one peak appears. Measurements were made with a 1.6 mm diameter Pt working electrode and Ag/AgCl reference electrode.

Table 8.D.1 lists measured peak currents for 0.015 M ascorbic acid as a function of scan rate.

- 1. The Randles-Sevcik equation predicts a square root dependence on scan rate. Plot the data to check this prediction.
- Use the slope of the plot to calculate the diffusion coefficient for ascorbic acid. The equation and relevant parameters are below Table 8.D.1.

Table 8.D.2 lists measured peak currents for a series of standard ascobic acid solutions and a test portion.

- 3. Plot the standard data to generate a calibration curve.
- Determine the ascorbic acid concentration in the test portion.
 Use the sample information to compare the measurement to the stated ingredients.

Table 8.D.1 Ascorbic acid peak current as a function of scan rate.

Scan Rate (V/s)	Peak Current (A)	(Scan Rate)^0.5 (V/s)^0.5	Peak Current (μΑ)
0.10	6.50E-05		
0.50	1.42E-04		
1.00	2.25E-04		
5.00	4.70E-04		

Randles-Sevcik equation: $i_{\rm p} = (2.69 \times 10^5) n^{3/2} AcD^{1/2} v^{1/2}$ where: *n* is number of electrons 1 A is electrode area in cm^2 cm^2 0.020 cm dia electrode 0.16 0.001 L/cm³ c is bulk analyte concentration in mol/cm³ mol/cm³ 0.000015 D is analyte diffusion coefficient in cm^2/s and v is scan rate in V/s slope = $(2.69 \times 10^5)n^{3/2}AcD^{1/2} =$ cm²/s D =

Conc (M)	Peak Current (A)	Peak Current (μΑ)
0.000	5.00E-07	0.50
0.005	2.11E-05	21.08
0.010	4.32E-05	43.18
0.015	6.21E-05	62.06
0.020	8.42E-05	84.17
juice	1.14E-05	11.40

Table 8.D.2 Ascorbic acid standards and unknown.

Calibration Function				
slope:	μΑ/Μ			
intercept:	μΑ			
Test portion:	М			

The label on the juice container listed 108 mg vitamin C per 240 mL serving.

Use the formula weight (176.1 g/mol) to determine the amount of vitamin C in one serving of juice. 176.1

g/mol L mg vit C g

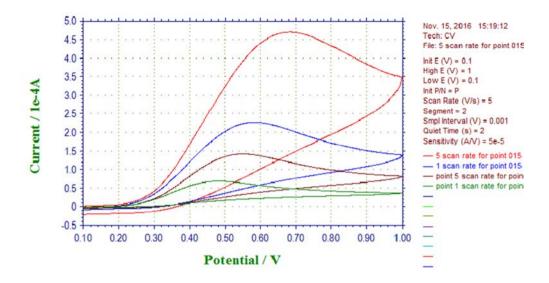


Figure 8.D.1. Cyclic Voltammograms of 0.015 M vit C in 0.5 M KCl at scan rates of 0.1 (green), 0.5 (brown), 1 (blue), and 5 (red) V/s.

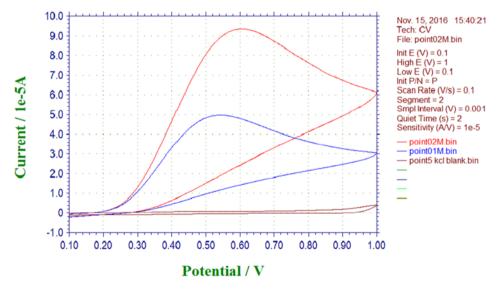


Figure 8.D.2. Cyclic Voltammograms of 0.5 M KCl blank (brown), 0.01 M vit C (blue), and 0.02 M vit C (red). Scan rate = 0.1 V/s.